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Abstract
A new purely algebraic algorithm is presented for computation of invariants
(generalized Casimir operators) of Lie algebras. It uses the Cartan method
of moving frames and the knowledge of the group of inner automorphisms of
each Lie algebra. The algorithm is applied, in particular, to computation of
invariants of real low-dimensional Lie algebras. A number of examples are
calculated to illustrate its effectiveness and to make a comparison with the same
cases in the literature. Bases of invariants of the real six-dimensional solvable
Lie algebras with four-dimensional nilradicals are newly calculated and listed
in a table.

PACS numbers: 02.20.−a, 02.20.Sv, 02.40.−k, 02.40.Vh, 03.65.Fd
Mathematics Subject Classification: 17B05, 17B10, 17B30, 22E70, 58D19,
81R05

1. Introduction

Real low-dimensional Lie algebras are finding numerous applications in many branches of
mathematics and physics. Although a substantive review of these efforts would be desirable, it
is well beyond the scope of the present paper. Such applications provide a general motivation
for this work. Result of a smaller and more specific problem, namely classification of
isomorphism classes of low-dimensional algebras, is the playground and test bed for the
method proposed in this paper, although our method is not constrained to such Lie algebras
only (see example 6).
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Many authors encountered the need to use a list of isomorphism classes of the low-
dimensional real Lie algebras. In various degrees of completeness, such lists are available in
the literature [3, 5, 14, 20–25, 30, 32, 33, 36, 43] (for a review of results on classification
of low-dimensional algebras see table 1 in preprint math-ph/0301029v7). Unfortunately,
it is a laborious and thankless task to unify and correct these lists. The number of entries in
such lists rapidly increases with growing dimension, even if each parameter-dependent family
of non-isomorphic Lie algebras is counted as a single entry. Indeed, different choices of bases
of the algebras and ranges of continuous parameters, not mentioning occasional misprints
and errors, make it difficult to compare such results. Rigorously speaking, the problem of
classification of (solvable) Lie algebras is wild since it includes, as a subproblem, the problem
on reduction of pair of matrices to a canonical form [18].

The goal of this paper is to introduce an original method for calculating invariant operators
(‘generalized Casimir operators’) of the Lie algebras. In our opinion its main advantage is
in that it is purely algebraic. Unlike the conventional methods, it eliminates the need to
solve systems of differential equations, replacing them by algebraic equations. Efficient
exploitation of the new method imposes certain constraints on the choice of bases of the Lie
algebras. That then automatically yields simpler expressions for the invariants. In some cases
the simplification is considerable.

The interest in finding all independent invariants of the real low-dimensional Lie algebras
was recognized a few decades ago [1, 4, 30, 34, 39, 44]. Let us point out that invariants,
which are polynomial operators in the Lie algebra elements, are called here the Casimir
operators, while those which are not necessarily polynomials are called generalized Casimir
operators.

At present it looks impossible to construct theory of generalized Casimir operators in
the general case. There are, however, quite a few papers on properties of such operators, on
estimation of their number, on computing methods and on application of invariants of various
classes of Lie algebras, or even a particular Lie algebra which appears in physical problems. In
particular, functional bases of invariants were calculated for all three-, four-, five-dimensional
and nilpotent six-dimensional real Lie algebras in [30]. The same problem was considered
in [26] for the six-dimensional real Lie algebras with four-dimensional nilradicals. In [31] the
subgroups of the Poincaré group together with their invariants were found. The unique (up
to independence) Casimir operator of the unimodular affine group SA(4, R) which appears,
along with the double covering group SA(4, R), as a symmetry group of the spectrum of
particles in various gravity-related theories (metric-affine theory of gravity, particles in curved
spacetime, QCD-induced gravity effects on hadrons) is calculated in [19] and then applied to
explicit construction of the unitary irreducible representations of SA(4, R).

The existence of bases consisting entirely of Casimir operators (polynomial invariants)
is important for the theory of generalized Casimir operators and for their applications. It
was shown that it is the case for the nilpotent and for perfect Lie algebras [1]. A Lie
algebra A is perfect if [A,A] = A; the derived algebra equals A. (Let us note that the same
name is also used for another class of Lie algebras [17].) Properties of Casimir operators
of some perfect Lie algebras and estimations for their number were investigated recently
in [10, 11, 28].

Invariants of Lie algebras with various additional structural restrictions are also found
in the literature, namely the solvable Lie algebras with the nilradicals isomorphic to the
Heisenberg algebras [40], with Abelian nilradicals [27, 29], with nilradicals containing
Abelian ideals of codimension 1 [41], solvable triangular algebras [42], some solvable rigid
Lie algebras [8, 9], solvable Lie algebras with graded nilradical of maximal nilindex and a
Heisenberg subalgebra [2].
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In [37] the Casimir operators of a number of series of inhomogeneous classical groups
were explicitly constructed. The applied method is based on a particular fibre bundle structure
of the generic orbits generated by the coadjoint representation of a semidirect product.

In this paper, after a short review of necessary notions and results, we formulate a simple
algorithm for finding the generalized Casimir operators of Lie algebras. The algorithm makes
use of the Cartan method of moving frames in the Fels–Olver version ([15, 16] and references
therein). It differs from existing methods in that it allows one to avoid integration of systems
of partial differential equations. Then six examples are described in detail. They are selected
to illustrate various aspects of our method. Finally we present a complete list of corrected and
conveniently modified bases of invariants of the real six-dimensional solvable Lie algebras
with four-dimensional nilradicals.

2. Preliminaries

Consider a Lie algebra A of dimension dim A = n < ∞ over the complex or real field and
the corresponding connected Lie group G. The results presented in this paper refer to real Lie
algebras.

Any (fixed) set of basis elements e1, . . . , en of A satisfies the commutation relations

[ei, ej ] = ck
ij ek,

where ck
ij are components of the tensor of structure constants of A in the chosen basis. Hereafter

indices i, j and k run from 1 to n and we use the summation convention for repeated indices.
To introduce the notion of invariants of a Lie algebra, consider the dual space A∗ of

the vector space A. The map Ad∗: G → GL(A∗) defined for any g ∈ G by the relation
〈Ad∗

gf, a〉 = 〈f, Adg−1a〉 for all f ∈ A∗ and a ∈ A is called the coadjoint representation of
the Lie group G. Here Ad: G → GL(A) is the usual adjoint representation of G in A, and the
image AdG of G under Ad is the inner automorphism group Int(A) of the Lie algebra A. The
image of G under Ad∗ is a subgroup of GL(A∗) and is denoted by Ad∗

G.
A function F ∈ C∞(A∗) is called an invariant of Ad∗

G if F(Ad∗
gf ) = F(f ) for all g ∈ G

and f ∈ A∗.
Our task here is to determine the basis of the functionally independent invariants for Ad∗

G

and then to transform these invariants to the invariants of the algebra A. Any other invariant
of A is a function of the independent ones.

Let x = (x1, . . . , xn) be the coordinates in A∗ associated with the dual basis to the basis
e1, . . . , en. Any invariant F(x1, . . . , xn) of Ad∗

G is a solution of the linear system of first-order
partial differential equations, see, e.g. [1, 4, 35],

XiF = 0 i.e. ck
ij xkFxj

= 0, (1)

where Xi = ck
ij xk∂xj

is the infinitesimal generator of the one-parameter group {Ad∗
G(exp εei)}

corresponding to ei . The mapping ei → Xi gives a representation of the Lie algebra A. It is
faithful iff the centre of A consists of zero only.

It was noted already in [4, 34] that the maximal possible number NA of functionally
independent invariants F l(x1, . . . , xn), l = 1, . . . , NA, coincides with the number of
functionally independent solutions of system (1). It is given by the difference

NA = dim A − rank A. (2)

Here

rank A = sup
(x1,...,xn)

rank
(
ck
ij xk

)n

i,j=1.
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The rank of the Lie algebra A is a bases-independent characteristic of the algebra A. An
interpretation of NA from the differential form point of view can be found in [12].

Given any invariant F(x1, . . . , xn) of Ad∗
G, one finds the corresponding invariant of the

Lie algebra A as symmetrization, Sym F(e1, . . . , en), of F. It is often called a generalized
Casimir operator of A. If F is a polynomial, Sym F(e1, . . . , en) is a usual Casimir operator.
More precisely, the symmetrization operator Sym acts only on the monomials of the forms
ei1 · · · eir , where there are non-commuting elements among ei1 , . . . , eir , and is defined by the
formula

Sym
(
ei1 · · · eir

) = 1

r!

∑
σ∈Sr

eiσ1
· · · eiσr

,

where i1, . . . , ir take values from 1 to n, r ∈ N, the symbol Sr denotes the permutation group
of r elements.

The sets of invariants of Ad∗
G and invariants of A are denoted by Inv(Ad∗

G) and Inv(A),
respectively. A set of functionally independent invariants F l(x1, . . . , xn), l = 1, . . . , NA,
forms a functional basis (fundamental invariant) of Inv(Ad∗

G), i.e. any invariant F(x1, . . . , xn)

can be uniquely presented as a function of F l(x1, . . . , xn), l = 1, . . . , NA. Accordingly the
set of Sym F l(e1, . . . , en), l = 1, . . . , NA, is called a basis of Inv(A).

If the Lie algebra A is decomposable into the direct sum of Lie algebras A1 and A2 then
the union of bases of Inv(A1) and Inv(A2) is a basis of Inv(A). Therefore, for classification
of invariants of Lie algebras from a given class it is really enough for one to describe only
invariants of the indecomposable algebras from this class.

3. The algorithm

The standard method of construction of generalized Casimir operators consists of integration of
the system of linear differential equations (1). It turns out to be rather cumbersome calculation,
once the dimension of Lie algebra is not one of the lowest few. Alternative methods use matrix
representations of Lie algebras, see, e.g. [13]. They are not much easier and are valid for a
limited class of representations.

The algebraic method of computation of invariants of Lie algebras presented in this paper
is simpler and generally valid. It extends to our problem of the exploitation of the Cartan
method of moving frames [15, 16].

Let us recall some facts from [15, 16] and adapt them to the particular case of the coadjoint
action of G on A∗. Let A = Ad∗

G × A∗ denote the trivial left principal Ad∗
G-bundle over A∗.

The right regularization R̂ of the coadjoint action of G on A∗ is the diagonal action of Ad∗
G on

A = Ad∗
G × A∗. It is provided by the maps

R̂g(Ad∗
h, f ) = (Ad∗

h · Ad∗
g−1 , Ad∗

gf ), g, h ∈ G, f ∈ A∗,

where the action on the bundle A = Ad∗
G × A∗ is regular and free. We call R̂g the lifted

coadjoint action of G. It projects back to the coadjoint action on A∗ via the Ad∗
G-equivariant

projection πA∗ :A → A∗. Any lifted invariant of Ad∗
G is a (locally defined) smooth function

from A to a manifold, which is invariant with respect to the lifted coadjoint action of G. The
function I:A → A∗ given by I = I(Ad∗

g, f ) = Ad∗
gf is the fundamental lifted invariant of

Ad∗
G, i.e. I is a lifted invariant and any lifted invariant can be locally written as a function

of I. Using an arbitrary function F(f ) on A∗, we can produce the lifted invariant F ◦ I of
Ad∗

G by replacing f with I = Ad∗
gf in the expression for F. Ordinary invariants are particular

cases of lifted invariants, where one identifies any invariant formed as its composition with the
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standard projection πA∗ . Therefore, ordinary invariants are particular functional combinations
of lifted ones that happen to be independent of the group parameters of Ad∗

G.
In view of the above consideration, the proposed algorithm for construction of invariants

of Lie algebra A can be briefly formulated into the following four steps.
1. Construction of generic matrix B(θ) of Ad∗

G. It is calculated from the structure
constants of the Lie algebra by exponentiation. B(θ) is the matrix of an inner automorphism
of the Lie algebra A in the given basis e1, . . . , en, θ = (θ1, . . . , θr ) are group parameters
(coordinates) of Int(A), and

r = dim Ad∗
G = dim Int(A) = n − dim Z(A),

where Z(A) is the centre of A. Generally that is a quite straightforward problem if n = dim A

is a small integer, and it can be solved by means of using symbolic calculation packages (we
have used Maple 9.0). Computing time may essentially depend on choice of basis of the Lie
algebra A.

2. Finite transformations. The transformations from Ad∗
G can be presented in the

coordinate form as

(x̃1, . . . , x̃n) = (x1, . . . , xn) · B(θ1, . . . , θr ), (3)

or briefly x̃ = x · B(θ). The right-hand member x · B(θ) of equality (3) is the explicit form
of the fundamental lifted invariant I of Ad∗

G in the chosen coordinates (θ, x) in Ad∗
G × A∗.

3. Elimination of parameters from system (3). According to [15, 16], there are exactly
NA independent algebraic consequences of (3), which do not contain the parameters θ (θ -free
consequences). They can be written in the form

F l(x̃1, . . . , x̃n) = F l(x1, . . . , xn), l = 1, . . . , NA.

4. Symmetrization. The functions F l(x1, . . . , xn) which form a basis of Inv(Ad∗
G), are

symmetrized to Sym F l(e1, . . . , en). It is a desired basis of Inv(A).
Let us give some remarks on the steps of the algorithm.
In the first step we use second canonical coordinates on Int A and present the matrix B(θ)

as

B(θ) =
r∏

i=1

exp
(
θi âden−r+i

)
, (4)

where e1, . . . , en−r are assumed to form a basis of Z(A); adv denotes the adjoint representation
of v∈A in GL(A): advw = [v,w] for all w∈A, and the matrix of adv in the basis e1, . . . , en is
denoted as âdv . In particular, âdei

= (
ck
ij

)n

j,k=1. Sometimes the parameters θ are additionally
transformed in a light manner (signs, renumbering, etc) for simplification of final presentation
of B(θ).

Since B(θ) is a general form of matrices from Int A, we should not adopt it in any way
for the second step.

In fact, the third step of our algorithm involves only preliminaries of the moving
frame method, namely, the procedure of invariant lifting [15, 16]. Instead, other closed
techniques can be used within the scope of the moving frame method, which are also based
on using an explicit form of finite transformations (3). One of them is the normalization
procedure [15, 16]. Following it, we can reformulate the third step of the algorithm.

3′. Elimination of parameters from lifted invariants. We find a nonsingular submatrix

∂
(
Ij1 , . . . , Ijρ

)
∂
(
θk1 , . . . , θkρ

) (ρ = rank A)
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Table 1. Invariants of the real six-dimensional solvable Lie algebras with four-dimensional
nilradicals.

Algebra Non-zero commutation relations Invariants

Nabcd
6.1 [e1, e5] = ae1, [e2, e5] = be2, [e4, e5] = e4,

ec
3ea

4
e1

,
ed

3 eb
4

e2

[e1, e6] = ce1, [e2, e6] = de2, [e3, e6] = e3,
ac 	= 0, b2 + d2 	= 0

Nabc
6.2 [e1, e5] = ae1, [e2, e5] = e2, [e4, e5] = e3,

ea
2 eac−b

3
e1

, e2e
c
3 exp

(
e4
e3

)
[e1, e6] = be1, [e2, e6] = ce2, [e3, e6] = e3,
[e4, e6] = e4, a

2 + b2 	= 0

Na
6.3 [e1, e5] = e1, [e2, e5] = e2, [e4, e5] = e3, e3 exp

(
− e2

e1

)
, e1 exp

(
− e4

e3
− a

e2
e1

)
[e1, e6] = ae1, [e2, e6] = e1 + ae2,
[e3, e6] = e3, [e4, e6] = e4

Nab
6.4 [e1, e5] = e1, [e2, e5] = e2, [e4, e5] = e3, e2b

3

(
e2

1 + e2
2

)a

exp
(
−2a

e4
e3

)
,

[e1, e6] = e2, [e2, e6] = −e1, [e3, e6] = ae3, e3 exp
(
a arctan e2

e1

)
[e4, e6] = be3 + ae4, a 	= 0

Nab
6.5 [e1, e5] = ae1, [e3, e5] = e3, [e4, e5] = e3 + e4,

eb
2ea

3
e1

, e3 exp
(
− e4

e3

)
[e1, e6] = be1, [e2, e6] = e2, ab 	= 0

Nab
6.6 [e1, e5] = ae1, [e2, e5] = ae2, [e3, e5] = e3,

[e4, e5] = e3 + e4, [e1, e6] = e1, [e2, e6] = e1 + e2,
ea

3
e1

exp
(

e2
e1

)
, e3 exp

(
b

e2
e1

− e4
e3

)
[e4, e6] = be3, a

2 + b2 	= 0

Nabc
6.7 [e1, e5] = ae1, [e2, e5] = ae2, [e3, e5] = e3, e3 exp

(
− e4

e3
− c arctan e2

e1

)
,

[e4, e5] = e3 + e4, [e1, e6] = be1 + e2,
(
e2

1 + e2
2

)
e−a

3 exp
(

2b arctan e2
e1

)
[e2, e6] = −e1 + be2, [e4, e6] = ce3, a

2 + c2 	= 0

N6.8 [e1, e5] = e1, [e4, e5] = e2, [e2, e6] = e2, e1 exp
(
− e4

e2

)
, e2 exp

(
− e3

e2

)
[e3, e6] = e2 + e3, [e4, e6] = e4

Na
6.9 [e1, e5] = e1, [e4, e5] = e2, [e2, e6] = e2, e2a

1 exp
(

e2
3−2ae2e4

e2
2

)
, ea

2 exp
(
− e3

e2

)
[e3, e6] = ae2 + e3, [e4, e6] = e3 + e4

Nab
6.10 [e1, e5] = ae1, [e2, e5] = e2, [e3, e5] = e3,

ea
2

e1
exp

(
e3
e2

)
, e2b

2 exp
(

e2
3−2e2e4

e2
2

)
[e4, e5] = be2 + e4, [e1, e6] = e1, [e3, e6] = e2,
[e4, e6] = e3

Na
6.11 [e2, e5] = e1, [e3, e5] = e3, [e4, e5] = e3 + e4, e4

e3
− e2

e1
,

ea
1

e3
exp

(
e2
e1

)
[e1, e6] = e1, [e2, e6] = e2, [e3, e6] = ae3, [e4, e6] = ae4

Nab
6.12 [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = e3, e1e4−e2e3

e2
1+e2

3
+ b arctan e3

e1
,

[e4, e5] = e3 + e4, [e1, e6] = e3, [e2, e6] = ae1 − be3 + e4, e1e2+e3e4
e2

1+e2
3

+ a arctan e3
e1

+ 1
2 ln

(
e2

1 + e2
3

)
[e3, e6] = −e1, [e4, e6] = be1 − e2 + ae3

Nabcd
6.13 [e1, e5] = ae1, [e2, e5] = be2, [e3, e5] = e4, [e4, e5] = −e3, e2

1

(
e2

3 + e2
4

)−c

exp
(

2a arctan e4
e3

)
,

[e1, e6] = ce1, [e2, e6] = de2, [e3, e6] = e3, [e4, e6] = e4, e2
2

(
e2

3 + e2
4

)−d

exp
(

2b arctan e4
e3

)
a2 + c2 	= 0, b2 + d2 	= 0

Nabc
6.14 [e1, e5] = ae1, [e3, e5] = be3 + e4, [e4, e5] = −e3 + be4, e1e

−c
2 exp

(
a arctan e4

e3

)
,

[e1, e6] = ce1, [e2, e6] = e2, ac 	= 0
(
e2

3 + e2
4

)
exp

(
2b arctan e4

e3

)

Nabcd
6.15 [e1, e5] = e1, [e2, e5] = e2, [e3, e5] = ae3 + be4,

(
e2

1 + e2
2

)
exp

(
2
b

arctan e4
e3

+ 2c arctan e2
e1

)
,

[e4, e5] = −be3 + ae4, [e1, e6] = ce1 + e2,
(
e2

3 + e2
4

)
exp

(
2a
b

arctan e4
e3

+ 2d arctan e2
e1

)
[e2, e6] = −e1 + ce2, [e3, e6] = de3, [e4, e6] = de4, b 	= 0
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Table 1. (Continued.)

Algebra Non-zero commutation relations Invariants

Nab
6.16 [e2, e5] = e1, [e3, e5] = ae3 + e4, [e4, e5] = −e3 + ae4,

(
e2

3 + e2
4

)
e−2b

1 exp
(
−2a

e2
e1

)
, e2

e1
+ arctan e4

e3

[e1, e6] = e1, [e2, e6] = e2, [e3, e6] = be3, [e4, e6] = be4

Na
6.17 [e1, e5] = ae1, [e2, e5] = e1 + ae2, [e3, e5] = e4, e1 exp

(
−a

e2
e1

)
,

e2
e1

+ arctan e4
e3

[e4, e5] = −e3, [e3, e6] = e3, [e4, e6] = e4

Nabc
6.18 [e1, e5] = e2, [e2, e5] = −e1, [e3, e5] = ae3 + be4, arctan e4

e3
− b arctan e2

e1
,

[e4, e5] = −be3 + ae4, [e1, e6] = e1, [e2, e6] = e2,
(
e2

3 + e2
4

)(
e2

1 + e2
2

)−c

exp
(

2a arctan e4
e3

)
[e3, e6] = ce3, [e4, e6] = ce4, b 	= 0

N6.19 [e1, e5] = e2, [e2, e5] = −e1, [e3, e5] = e1 + e4, e1e4−e2e3
e2

1+e2
2

, e1e3+e2e4
e2

1+e2
2

+ arctan e4
e3

[e4, e5] = e2 − e3, [e1, e6] = e1, [e2, e6] = e2,
[e3, e6] = e3, [e4, e6] = e4

Nab
6.20 [e2, e5] = ae2, [e4, e5] = e4, [e2, e6] = be2, e1,

eb
3ea

4
e2

[e3, e6] = e3, [e5, e6] = e1

Na
6.21 [e2, e5] = e2, [e4, e5] = e3, [e2, e6] = ae2, e1,

ea
3

e2
exp

(
e4
e3

)
[e3, e6] = e3, [e4, e6] = e4, [e5, e6] = e1

Naε
6.22 [e2, e5] = e1, [e4, e5] = e4, [e3, e6] = e3, e1,

ea
3

e4
exp

(
e2
e1

)
[e4, e6] = ae4, [e5, e6] = εe1, ε = 0, 1, a2 + ε2 	= 0

Naε
6.23 [e2, e5] = e1, [e3, e5] = e3, [e4, e5] = e4, [e2, e6] = ae1, e1,

(
e2

3 + e2
4

)
exp

(
−2 e2

e1
− 2a arctan e4

e3

)
[e3, e6] = e4, [e4, e6] = −e3, [e5, e6] = εe1, ε = 0, 1

N6.24 [e3, e5] = e3, [e4, e5] = e3 + e4, [e2, e6] = e2, [e5, e6] = e1 e1, e3 exp
(
− e4

e3

)

Nab
6.25 [e2, e5] = ae2, [e3, e5] = e4, [e4, e5] = −e3, [e2, e6] = be2, e1, e

2
2

(
e2

3 + e2
4

)−b

exp
(
−2a arctan e4

e3

)
[e3, e6] = e3, [e4, e6] = e4, [e5, e6] = e1, a

2 + b2 	= 0

Na
6.26 [e3, e5] = ae3 + e4, [e4, e5] = −e3 + ae4, [e2, e6] = e2, e1,

(
e2

3 + e2
4

)
exp

(
2a arctan e4

e3

)
[e5, e6] = e1

Nε
6.27 [e2, e5] = e1, [e3, e5] = e4, [e4, e5] = −e3, [e3, e6] = e3, e1,

e2
e1

+ arctan e4
e3

[e4, e6] = e4, [e5, e6] = εe2, ε = 0, 1
N6.28 [e2, e4] = e1, [e3, e4] = e2, [e1, e5] = e1, [e3, e5] = −e3, None

[e4, e5] = e4, [e2, e6] = e2, [e3, e6] = 2e3, [e4, e6] = −e4

Nab
6.29 [e2, e3] = e1, [e1, e5] = e1, [e2, e5] = e2, [e4, e5] = ae4, None

[e1, e6] = e1, [e3, e6] = e3, [e4, e6] = be4, a
2 + b2 	= 0

Na
6.30 [e2, e3] = e1, [e1, e5] = 2e1, [e2, e5] = e2, [e3, e5] = e3, None

[e4, e5] = ae4, [e3, e6] = e2, [e4, e6] = e4

N6.31 [e2, e3] = e1, [e2, e5] = e2, [e3, e5] = −e3, [e1, e6] = e1, e1 exp
(
− e4

e1

)
, e5 − e2e3+e3e2

2e1

[e3, e6] = e3, [e4, e6] = e1 + e4

Na
6.32 [e2, e3] = e1, [e2, e5] = e2, [e3, e5] = −e3, [e4, e5] = e1, None

[e1, e6] = e1, [e2, e6] = ae2, [e3, e6] = (1−a)e3,

[e4, e6] = e4

N6.33 [e2, e3] = e1, [e1, e5] = e1, [e2, e5] = e2, [e1, e6] = e1, None
[e3, e6] = e3 + e4, [e4, e6] = e4

Na
6.34 [e2, e3] = e1, [e1, e5] = e1, [e2, e5] = e2, [e3, e5] = e4, None

[e1, e6] = ae1, [e2, e6] = (a−1)e2, [e3, e6] = e3,

[e4, e6] = e4

Nab
6.35 [e2, e3] = e1, [e2, e5] = e3, [e3, e5] = −e2, [e4, e5] = ae4,

eb
1

e2
4
, 2e5 − e2

2+e2
3

e1
if a = 0,

[e1, e6] = 2e1, [e2, e6] = e2, [e3, e6] = e3, [e4, e6] = be4, None if a 	= 0
a2 + b2 	= 0

N6.36 [e2, e3] = e1, [e2, e5] = e3, [e3, e5] = −e2, [e1, e6] = 2e1, e1 exp
(
−2 e4

e1

)
, 2e5 − e2

2+e2
3

e1

[e2, e6] = e2, [e3, e6] = e3, [e4, e6] = e1 + 2e4
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Table 1. (Continued.)

Algebra Non-zero commutation relations Invariants

Na
6.37 [e2, e3] = e1, [e2, e5] = e3, [e3, e5] = −e2, [e4, e5] = e1, None

[e1, e6] = 2e1, [e2, e6] = e2 + ae3, [e3, e6] = −ae2 + e3,
[e4, e6] = 2e4

N6.38 [e2, e3] = e1, [e1, e5] = e1, [e2, e5] = e2, [e1, e6] = e1, e4,
e2e3+e3e2

2e1
− e5 + e6 + e4 ln e1

[e3, e6] = e3, [e5, e6] = e4

N6.39 [e2, e3] = e1, [e2, e5] = e3, [e3, e5] = −e2, [e1, e6] = 2e1, e4,
e2

2+e2
3

e1
− 2e5 + e4 ln e1

[e2, e6] = e2, [e3, e6] = e3, [e5, e6] = e4

N6.40 [e2, e3] = e1, [e2, e5] = e3, [e3, e5] = −e2, [e4, e6] = e4, e1,
e2

2+e2
3

e1
− 2e5 + 2e1 ln e4

[e5, e6] = e1

in the Jacobian matrix ∂I/∂θ and solve the equations Ij1 = c1, . . . , Ijρ
= cρ with respect to

θk1 , . . . , θkρ
. Here the constants c1, . . . , cρ are chosen to lie in the range of values of Ij1 , . . . ,

Ijρ
. After substituting the found solutions to the other lifted invariants, we obtain NA = n−ρ

usual invariants F l(x1, . . . , xn).
In conclusion, let us underline that the search for invariants of the Lie algebra A, which

has been done by solution of system PDEs (1), is replaced here by construction of the matrix
B(θ) of inner automorphisms and by excluding the parameters θ from the algebraic system
(3) in some way.

4. Exploitation of the algorithm

The six examples shown in this section are selected to give us an opportunity to make
important comments and comparison with analogous results elsewhere. The Lie algebras are
of dimension four, five and six in examples 1–5 and of general finite dimension in the last
example. In some cases the algebras contain continuous parameters, hence they stand for
continuum of non-isomorphic Lie algebras. For each algebra only the non-zero commutation
relations are shown.

Let us point out that simplicity of the form of invariants as well as simplicity of computation
often depend on the choice of bases of Lie algebras. The idea of an appropriate choice of
bases for solvable Lie algebras consists in making evident the chain of solvable subalgebras
Ai = 〈e1, . . . , ei〉 of ascending dimensions, such that Ai is an ideal in Ai+1, i = 1, . . . , n − 1.
The above basis e1, . . . , en is called K-canonical one [23] which corresponds to the composition
series K = {Ai, i = 1, . . . , n}. K-canonical bases corresponding to the same composition
series K are connected to each other via linear transformations with triangular matrices. In
particular, we needed to modify bases of solvable Lie algebras in classification of nilpotent
six-dimensional Lie algebras [22] and in classification of six-dimensional Lie algebras with
four-dimensional nilradical [43].

Other criteria of optimality of bases can be used additionally.

Example 1. The Lie algebra in this example is one of the complicate ones among four-
dimensional solvable Lie algebras. In this example, we show all details of our method.

The non-zero commutation relations are the following:

[e1, e4] = ae1, [e2, e4] = be2 − e3, [e3, e4] = e2 + be3, a > 0, b ∈ R.
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It is the Lie algebra A
a,b
4.6 in [23, 30, 32, 38]. According to (2), we have NA = 2, i.e. the algebra

A
a,b
4.6 has two functionally independent invariants. The matrices of the adjoint representation

âdei
of the basis elements e1, e2, e3 and e4 correspondingly have the form




0 0 0 a

0 0 0 0
0 0 0 0
0 0 0 0


 ,




0 0 0 0
0 0 0 b

0 0 0 −1
0 0 0 0


 ,




0 0 0 0
0 0 0 1
0 0 0 b

0 0 0 0


 ,




−a 0 0 0
0 −b −1 0
0 1 −b 0
0 0 0 0


 .

The product of their exponentiations is the matrix B of inner automorphisms of the first
step of our algorithm:

4∏
i=1

exp(−θi âdei
) = B(θ) =




eaθ4 0 0 −aθ1

0 ebθ4 cos θ4 ebθ4 sin θ4 −bθ2 − θ3

0 −ebθ4 sin θ4 ebθ4 cos θ4 θ2 − bθ3

0 0 0 1


 .

Substituting B(θ) into system (3) yields the system of linear equations with coefficients
depending explicitly on the parameters θ1, θ2, θ3 and θ4:

x̃1 = x1 eaθ4 ,

x̃2 = ebθ4(x2 cos θ4 − x3 sin θ4),

x̃3 = ebθ4(x2 sin θ4 + x3 cos θ4),

x̃4 = −ax1θ1 − x2(bθ2 + θ3) + x3(θ2 − bθ3) + x4.

Combining the first three equations of the system, one gets

x̃1

x1
= eaθ4 , x̃2

2 + x̃2
3 = e2bθ4

(
x2

2 + x2
3

)
,

x̃3

x̃2
= tan

(
arctan

x3

x2
+ θ4

)
.

Finally, obvious further combinations lead to the two θ -free relations

x̃b
1(

x̃2
2 + x̃2

3

)a = xb
1(

x2
2 + x2

3

)a ,

(
x̃2

2 + x̃2
3

)
exp

(
−2b arctan

x̃3

x̃2

)
= (

x2
2 + x2

3

)
exp

(
−2b arctan

x3

x2

)
.

Symmetrization of two expressions does not require any further computation. Consequently,
we have our final results: the two invariants

eb
1(

e2
2 + e2

3

)a and
(
e2

2 + e2
3

)
exp

(
−2b arctan

e3

e2

)

which form a basis of Inv
(
Aab

4.6

)
. It is equivalent to the one constructed in [30], but it contains

no complex numbers.

Example 2. The solvable Lie algebra A5.27 [24, 30] has the following commutation relations:

[e4, e3] = e1, [e1, e5] = e1, [e2, e5] = e1 + e2, [e3, e5] = e2 + e3.
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Here we have modified the basis to the K-canonical form [23], i.e. now 〈e1, . . . , ei〉 is an
ideal in 〈e1, . . . , ei, ei+1〉 for any i = 1, 2, 3, 4. The inner automorphisms of A5.27 are then
described by the triangular matrix

B(θ) =




eθ5 θ5 eθ5
(
θ4 + 1

2θ2
5

)
eθ5 θ3 θ1 + θ2

0 eθ5 θ5 eθ5 0 θ2 + θ3

0 0 eθ5 0 θ3

0 0 0 1 0

0 0 0 0 1




.

Combining the first and the second equations of the corresponding system (3), we can exclude
the parameter θ5 and obtain the relation

x̃1 exp

(
− x̃2

x̃1

)
= x1 exp

(
−x2

x1

)
.

Since NA = 1, there are no other possibilities for construction of θ -free relations. As a result,
we have the basis of Inv(A5.27), which consists of the unique element

e1 exp

(
−e2

e1

)
.

Example 3. The solvable Lie algebra A5.36 [24, 30] is defined by the commutation relations

[e2, e3]=e1, [e1, e4]=e1, [e2, e4]=e2, [e2, e5]=−e2, [e3, e5]=e3.

System (3) for A5.36 has the following form:

x̃1 = x1 eθ4 , x̃2 = −x1θ3 eθ4 eθ5 + x2 eθ4 eθ5 , x̃3 = x1θ2 e−θ5 + x3 e−θ5 ,

x̃4 = x1θ1 + x2θ2 + x4, x̃5 = x1θ2θ3 − x2θ2 + x3θ3 + x5.
(5)

We multiply the second and third equations and divide the result by the first equation. Then
adding the fifth one, we get

x̃5 +
x̃2x̃3

x̃1
= x5 +

x2x3

x1
.

Therefore, the right-side member of the latter equality gives an invariant of coadjoint
representation of the Lie group corresponding to A5.36. It is unique up to functional
independence since NA = 1. After symmetrization, which is quite non-trivial here in contrast
to the other examples, we obtain the basis of Inv(A5.36), formed by the single invariant

e5 +
e2e3 + e3e2

2e1
.

Example 4. The six-dimensional Lie algebra Nab
6.16 [43] is given by the following commutation

relations:

[e2, e5] = e1, [e3, e5] = ae3 + e4, [e4, e5] = −e3 + ae4,

[e1, e6] = e1, [e2, e6] = e1, [e3, e6] = be3, [e4, e6] = be4, a, b ∈ R.

For unification with the Mubarakzyanov classification of Lie algebras of dimensions not
greater than 4 and for simplicity of our calculations, we have changed numbering of the basis
elements in comparison with [43].
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The inner automorphisms of Nab
6.16 are defined by the block triangular matrix

B(θ) =




eθ6 θ5 eθ6 0 0 θ2 θ1

0 eθ6 0 0 0 θ2

0 0 eaθ5+bθ6 cos θ5 −eaθ5+bθ6 sin θ5 aθ3 − θ4 bθ3

0 0 eaθ5+bθ6 sin θ5 eaθ5+bθ6 cos θ5 θ3 + aθ4 bθ4

0 0 0 0 1 0

0 0 0 0 0 1




,

i.e. the corresponding system (3) has the form

x̃1 = eθ6x1, x̃2 = θ5 eθ6x1 + eθ6x2,

x̃3 = eaθ5+bθ6(x3 cos θ5 + x4 sin θ5), x̃4 = eaθ5+bθ6(−x3 sin θ5 + x4 cos θ5),

x̃5 = θ2x1 + (aθ3 − θ4)x3 + (θ3 + aθ4)x4 + x5, x̃6 = θ1x1 + θ2x2 + bθ3x3 + bθ4x4 + x6.

Obviously only the parameters θ5 and θ6, present in the first four equations, can be eliminated.
Namely, the expressions of θ5 and θ6 from the first and second equations are substituted into
the third and fourth equations. It leads to two θ -free relations defining the invariants

x̃2
3 + x̃2

4

x̃2b
1

exp

(
−2a

x̃2

x̃1

)
= x2

3 + x2
4

x2b
1

exp

(
−2a

x2

x1

)
,

x̃2

x̃1
+ arctan

x̃4

x̃3
= x2

x1
+ arctan

x4

x3
.

The symmetrization procedure is trivial in this case. As a result, we have the basis of invariants
for the Lie algebra Nab

6.16:

e2
3 + e2

4

e2b
1

exp

(
−2a

e2

e1

)
,

e2

e1
+ arctan

e4

e3
.

It is equivalent to the invariants found in [26] but is written in a much simpler form.

Example 5. The commutation relations of the solvable Lie algebra of Nab
6.25 [43] need first to

be corrected. Their version in [43] contains misprints. After that we get

[e2, e5] = ae2, [e3, e5] = e4, [e4, e5] = −e3, [e2, e6] = be2,

[e3, e6] = e3, [e4, e6] = e4, [e5, e6] = e1, a, b ∈ R, a2 + b2 	= 0.

As in example 4, we have suitably renumbered the basis elements.
After computing the inner automorphism group of Nab

6.25, we get system (3):

x̃1 = x1, x̃2 = eaθ4+bθ5x2, x̃3 = eθ5(x3 cos θ4 + x4 sin θ4),

x̃4 = eθ5(−x3 sin θ4 + x4 cos θ4), x̃5 = θ5x1 + aθ1x2 − θ3x3 + θ2x4 + x5,

x̃6 = −θ4x1 + bθ1x2 + θ2x3 + θ3x4 + x6.

(6)

Here the parameter θi correspond to ei+1, i = 1, . . . , 5. The number NA of independent
invariants of Nab

6.25 equals 2. It is obvious that e1 generating the centre Z
(
Nab

6.25

)
is one of the

invariants. The second invariant is found by elimination of θ4 and θ5 from the second, third
and fourth equations of system (6):(

x̃2
3 + x̃2

4

)b

x̃2
2

exp

(
2a arctan

x̃4

x̃3

)
=

(
x2

3 + x2
4

)b

x2
2

exp

(
2a arctan

x4

x3

)
.

Therefore, we have the following basis of Inv
(
Nab

6.25

)
:

e1,

(
e2

3 + e2
4

)b

e2
2

exp

(
2a arctan

e4

e3

)
.
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The three examples above show that, even for higher dimensional algebras of relatively
complicated structure, our method admits hand calculations, provided convenient bases are
used.

Example 6. In this example the Lie algebra is of general dimension n < ∞. Consider a class
formed by Lie algebras of finite dimensions without an upper bound, namely by the nilpotent
Lie algebras nn,1, n = 3, 4, . . . , with the (n−1)-dimensional Abelian ideal 〈e1, e2, . . . , en−1〉.
The non-zero commutation relations of nn,1 have the form [41]

[ek, en] = ek−1, k = 2, . . . , n − 1.

The inner automorphisms of nn,1 are described by the triangular matrix

B(θ) =




1 θ1
1
2! θ2

1
1
3! θ3

1 · · · 1
(n−2)! θn−2

1 θ2

0 1 θ1
1
2! θ2

1 · · · 1
(n−3)! θn−3

1 θ3

0 0 1 θ1 · · · 1
(n−4)! θn−4

1 θ4

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · θ1 θn−1

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1




,

i.e. the complete set of lifted invariants has the form

Ik =
k∑

j=1

1

(k − j)!
θ

k−j

1 xj , k = 1, . . . , n − 1, In = xn +
n−2∑
j=1

θj+1xj .

It is obvious that the basis element e1 generating the centre of nn,1 is one of the invariants
(I1 = x1). Other (n − 3) invariants are found by the normalization procedure applied to the
lifted invariants I2, . . . , In−1. Namely, we solve the equation I2 = 0 with respect to θ1 and
substitute the obtained expression θ1 = −x2/x1 to the other I’s. To construct polynomial
invariants finally, we multiply the derived invariants by powers of the invariant x1. Since
the symmetrization procedure is trivial for this algebra, we get the following complete set of
generalized Casimir operators which are classical Casimir operators:

e1,

k∑
j=1

(−1)k−j

(k − j)!
e
j−2
1 e

k−j

2 ej , k = 3, . . . , n − 1.

This set completely coincides with the one determined in lemma 1 of [29] and theorem 4
of [41].

5. Concluding remarks

It is likely that the moving frame method, combined with knowledge of the groups of inner
automorphisms, will allow one to investigate invariants and other characteristics of special
classes of Lie algebras, such as solvable Lie algebras with given structures of nilradicals
(see example 6 and [7]).

In the course of testing our method for computing the bases of invariants, we recalculated
invariants of real low-dimensional Lie algebras available in the literature. A detailed account
of this work is to be presented elsewhere. More precisely, a complete verified list of invariants
and other characteristics, such as the groups of inner automorphisms of low-dimensional Lie
algebras of dimension not greater than six, will be presented in [6].
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The invariants of Lie algebras of dimensions 3, 4, 5, as well as nilpotent Lie algebras of
dimension 6 of [30] are correct. Note however, that using our new method, all invariants can
be written avoiding introduction of complex numbers. As an illustration, compare example 1
above with the case of the Lie algebra Aab

4.6 of [30].
Our computation of invariants of the six-dimensional solvable Lie algebras with four-

dimensional nilradicals is presented in table 1. The same algebras were considered in
[26]. Besides correcting several misprints/errors (for example in the entries Na

6.3, N
ab
6.12,

Na
6.21, N

ab
6.25, N6.31, Nab

6.35 and N6.38), we found that, for most of the algebras, the bases of
invariants can be reduced to a simpler form just by choosing another (K-canonical) bases of
the algebras.

Contents of table 1. In the first column the symbol from [43] is shown, denoting six-
dimensional solvable Lie algebras with four-dimensional nilradicals. The parameters a, b, c, d

are real. The non-zero commutation relations are in the second column. In all cases we have
renumbered the basis elements of the algebras in comparison with [43] in order to have bases in
K-canonical forms. Bases of invariants are listed in the third column. Algebras are collected in
correspondence with structure of their nilradicals and centres. The algebras N6.1–N6.19 contain
the Abelian nilradicals (∼4A1) and the centres of dimension zero; the algebras N6.20–N6.27

have the Abelian nilradicals (∼4A1) and one-dimensional centres; the nilradical of N6.28 is
isomorphic to A4.1; the nilradicals of N6.29–N6.40 are isomorphic to A3.1 ⊕ A1.
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